Technical Data ECHOGRAPH 1095

DISPLAY	
Type of display	Colour TFT- LCD, transmissive,
	with LED display illumination
Size of display	$152.4 \mathrm{~mm} \times 91.44 \mathrm{~mm}$
Resolution	800×480 pix, 256 from 262144 colours
Size of A-scan	$152 \mathrm{~mm} \times 76.2 \mathrm{~mm}$
Scaling	Electronically generated
Scale division	Coarse: 10 -fold horizontal, 5 -fold vertical
	Fine subdivision: 25 -fold vertical
Image repetition frequency	60 Hz
A-SCAN REPRESENTATION AND DIGITIZING	
Image refresh frequency	60 Hz
A-scan representation	- Normal image (envelope or filled)
	- Frozen
	- Zoom across gate 1 or gate 2
RF representation	Across the entire time-base range
Rectification	Positive, negative, full-wave, without rectifica-
	tion (RF)
Suppression	Merely adjustable: $0-99 \%$ screen height in
	steps of 1% (linear)
Zoom	Gate range (gate $1 / 2$) to full screen (grid) width
A/D converter	16 bit
Digitising method	direct, with A/D converter
Sampling rate	100 MHz
Digitisation sampling error	$<+/-0.5 \%$ screen height
Response time	$<16.7 \mathrm{~ms}$

MEASUREMENT RANGES

Time base range
Time base range with TOFD and B-Scan
Time base range with signal averaging
Sound velocity
Probe delay
Pulse shift
Linearity of time base
Pulse repetition frequency
(PRF)

Trigger
DAC (option)
Encoder range

TRANSMITTER

Type of transmitters
Shape of transmitter pulse
Transmitter setting
Specification according to
EN 12668-1: td, tr, Vr, V50
SP = Spike Pulser
SWP = Square Wave Pulser
SP, 320 V
SP, 80 V
SWP, 80 V, 100 ns
SWP, 80 V, 3000 ns
SWP, 320 V, 50 ns
SWP, 320 V, 850 ns
Transmitter pulse voltage V50
Pulse length td

Pulse rise time tr
Max Volt after the pulse Vr
Frequency spectrum
Effective output impedance
Transmitter damping
$0.5-17760 \mathrm{~mm}$ steel
$0.5-343.4 \mathrm{~mm}$ steel
0.5 - 1000.5 mm steel
$200-15000 \mathrm{~m} / \mathrm{s}$ in steps of $1 \mathrm{~m} / \mathrm{s}$
$0-650 \mu \mathrm{~s}$
$0-3000 \mathrm{~mm}$ in steps of 0.1 mm
+/- 0.5 \% of screen width
Automatic optimization
$10-700 \mathrm{~Hz}$ (Auto high and Auto low),
manual (depending on the transmitter)
$10-5000 \mathrm{~Hz}$ [Spike Pulser],
10 - 1000 Hz [Square Wave Pulser]
internal, $1^{\text {st }}$ echo, external, external $1^{\text {st }}$ echo
Min. distance of the DAC support points:
0.3 mm steel

3000 mm max.

Square Wave Pulser, Spike Pulser
Uni-directional (negative) Square Wave Pulse

Legend:
td | tr | Vr | V50
$36 \mathrm{~ns} \pm 10 \%$ | < $10 \mathrm{~ns}|<12.8 \mathrm{~V}| 320 \mathrm{~V} \pm 10 \%$
$57 \mathrm{~ns} \pm 10 \%$ | $<4 \mathrm{~ns}|<3.2 \mathrm{~V}| 80 \mathrm{~V} \pm 10 \%$
$125 \mathrm{~ns} \pm 10 \%|<5 \mathrm{~ns}|<2.4 \mathrm{~V} \mid 80 \mathrm{~V} \pm 10 \%$
$3000 \mathrm{~ns} \pm 10 \%|<5 \mathrm{~ns}|<2.4 \mathrm{~V} \mid 80 \mathrm{~V} \pm 10 \%$
$66 \mathrm{~ns} \pm 10 \%|<5 \mathrm{~ns}|<12.8 \mathrm{~V} \mid 320 \mathrm{~V} \pm 10 \%$
$850 \mathrm{~ns} \pm 10 \%|<5 \mathrm{~ns}|<12.8 \mathrm{~V} \mid 320 \mathrm{~V} \pm 10 \%$
$60 \mathrm{~V}-320 \mathrm{~V}$ in steps of 1 V
Min.: 31 ns
Max.: 5000 ns (manual, auto depending on the probe)
Min.: 3 ns, Max.: 15 ns
$\mathrm{Vr}<4 \%$
See below: additional data according to EN 12668-1
< 4Ω
$50,75,220,1000^{*}[\Omega]$
*w/o active damping (input resistance 1000 Ohm approx.)

MEASURED VALUES Output of echo amplitude is stated in...	
	\% screen height dBabs in $\mathrm{dB} \mu \mathrm{V}$
	DGS/DAC/TCG/JIS/AWS: dBrel (relative to reference echo (line) in dB)
	AWS: $\quad \mathrm{D}=$ Rating in dB
	C = Attenuation
	$B=$ Reference
	A = Indication
	(following the standard AWS
	D1.1/D1.1M, only for gate 1)
	JIS: class (follow the standard JIS Z30602002, only for gate 1)
	DGS: mmFBH in equivalent flat bottom hole size
Output of echo transit time is stated in...	mm sound path (with straight probes)
	mm depth and projection distance or reduced projection distance (with angle incidence)
	Resolution: 0.1 mm steel
Output of wall thickness	Distance between trigger points in gate 1
	and 2 (the trigger point can be selected from
	either edge or peak, with RF representation
	also zero crossing after first edge can be se-
	lected). Optional min. or max. wall thickness or
	sound velocity.
	Resolution 0.01 mm steel, averaging with RF representation can be selected either from 1
	16 measurements.
MONITOR GATES	
Number of gates	3
Response time	By pulse repetition frequency
Measurement modes	Peak, edge, zero crossing
Operation modes	Normal or inverted
Range	Gate start: 0-20000 mm in steps of 0.1 mm
	Gate width: $0-3000 \mathrm{~mm}$ in steps of 0.1 mm
	(independent gates, controlled by skip distance, gate 2 position follows gate 1)
Statistical clearing	$0-250$ events
Switching outputs	Level: TTL (5V), low active, ZA = 100 Ohm
	Response accuracy: $+/-0.5 \%$ screen height
	Switching hysteresis: $<0.5 \%$ screen height
	Holding time of the switching output: 0.5/PRF
	with internal triggering, 1 ms with external triggering
Optical indication	3 LEDs on the front panel
Acoustical flaw alarm	Duration is 50 ms approx. (re-fresh with PRF)

INPUTS and OUTPUTS

Probe connection
USB interface
Flaw outputs
$2 \times$ Lemo 1
LEMO-0B, 4 Pin (optionally: adapter cable with USB Type A)
LEMO-1B, 10 Pin: TTL - level (5 V), low active, trigger level 2 V approx.
Synchronising input and output LEMO-1B, 10 Pin: TTL - level (5 V), low active, trigger level 2 V approx.
Max. PRF $=5 \mathrm{kHz}$, min. pulse length $=2 \mu \mathrm{~s}$, delay between trigger and transmitter pulse: 50.8μ s approx.,
max. jitter between trigger and transmitter pulse: +/- 10 ns
Encoder
LEMO-1B , (I/O), 10 pin: square or pulse signal:
TTL level (5 V), power supply via ECHOGRAPH 1095 (5 V, max. 200 mA)
External monitor
Connector for interface box
Digital inputs
Analog outputs
Via standard VGA connector (D-sub-HD 15 pin)
LEMO 1B, 14 pin
LEMO 1B, (D/A), 14 pin, TTL level (5 V), low:
active, trigger threshold 2 V approx.
LEMO 1B, (D/A), 14 pin: 2.5 Vpo , signal for SH
and wall thickness in gates $1,2,3$
Impedance: 100.5 Ohm
Linearity: error < 4\%
$\Delta f g(f g u-f g l)=21 \mathrm{MHz}$, $\mathrm{fgo}=\sqrt{ }(\mathrm{fgu} \mathrm{xfg})=23.2 \mathrm{MHz}$
0 dB to $92 \mathrm{~dB}==>$ noise level $<1 \mathrm{~V}$
Monitor position: no influence on the output signal
Influence of the pulse shape: error < 4\% (at $80 \% \mathrm{SH}$)
Min. hold time: 2/(pulse repetition frequency)

MISCELLANEOUS

Linear measuring system
Date and time
Languages

STORAGE

Memory card
Memory size
Report file
Screenshot
Types of report
Data recorder

Selectable mm or Inch
Built-in real time clock
DE, ES, FR, HU, IT, JP, NL, PL, RO, RU, SV, EN, CN, CZ
The language of the user interface may be selected by the operator.

SD card slot
8 GB, SD card
CSV format in ASCII
BMP format
Individual report, report of measurem. series, corrosion testing (matrix memory), reference up to 10,000 readings plus important parameters per file, each with assigned A-scan bitmap file (optionally)

POWER SUPPLY

Mains operation

Battery operation
Operating time (battery operation)
Data of rechargeable batteries
Charging method for batteries
Indication of battery capacity

Automatic voltage cut-off
Stability at voltage changes

Via power supply unit (input: $100-240 \mathrm{~V}$, $50 / 60 \mathrm{~Hz}$, output: $12 \mathrm{~V}, 4 \mathrm{~A}$
Permissible operat. temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Built-in (replaceable) Li-Ion batteries
9 h (with standard settings)
7.6 Ah-7.4 V-56 Wh
internally with charger unit (optional external charger unit available)
4-stage display symbol, about 15 minutes before low voltage condition (battery operation), the blue LED will start flashing If there is a low voltage condition both with mains or battery operation $< \pm 1 \%$ screen height and $< \pm 0.5 \%$ screen width (with voltage variations within the permissible range)

PERMISSIBLE AMBIENT

CONDITIONS

Permissible operating temper- -10 to $+50^{\circ} \mathrm{C} /-20$ to $+60^{\circ} \mathrm{C}$ ature (with battery) / storage Dust and humidity
protection class IP65

MECHANICS

Size (HxWxD)

Weight
$138 \mathrm{~mm} \times 249 \mathrm{~mm} \times 52 \mathrm{~mm}$ w/o rubber holster $149 \mathrm{~mm} \times 262 \mathrm{~mm} \times 54 \mathrm{~mm}$ with rubber holster 2.0 kg (with Li-lon battery and protective holster)

ADDITIONAL DATA AC-

 CORDING TO EN 12668-1Transmitter (definitions)

Linearity of vertical display

Stability (after warm-up period) Echo height < +/- 2\%
at temperature changes

Display diffuseness (jitter of the screen display)
Accuracy of the calibrated attenuator

REVISION HSITORY

Rev. A
Rev. B
Rev. C

Attenuator
nominal value permissible echo height [\%] echo height [\%]

+2	100	$98-100$
+1	90	$88-92$
0	80	80
-2	64	$62-66$
-4	50	$48-52$
-6	40	$38-42$
-10	25	$23-27$
-12	20	$18-22$
-18	10	$8-12$
-24	5	$3-7$

Echo position < +/- 0.5% screen width per $10^{\circ} \mathrm{C}$ temperature change
Echo height max. 1\% screen height, echo position max. +/- 0.2% of screen width
a) Deviation of fine adjustment: accumulated max. +/- 0.5 dB within a 20 dB interval
b) Deviation of coarse adjustment: accumulated max. +/- 1 dB within a 60 dB interval
initial version
digital switching outputs, trigger in/out, encoder analog outputs, digital inputs

